
Fluidigm2PURC Documentation
Release 0.1.0

Paul Blischak

Feb 05, 2019

Contents

1 Tutorials 3

2 Main Documentation 7

3 Extras 11

4 Indices and tables 13

i

ii

Fluidigm2PURC Documentation, Release 0.1.0

Fluidigm2PURC is a set of Python scripts for processing paired-end Illumina data generated from sequencing double-
barcoded PCR amplicons.

Contents 1

https://travis-ci.org/pblischak/fluidigm2purc
http://fluidigm2purc.readthedocs.io/en/latest/?badge=latest
https://hub.docker.com/r/pblischak/fluidigm2purc

Fluidigm2PURC Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Tutorials

1.1 Quick Start

This Quick Start Tutorial will walk you through every step of downloading, installing, and running the Flu-
idigm2PURC pipeline. The details of each step can be found in the main documentation.

Requirements:

• Python (we suggest using Miniconda)

• Python modules: pandas, numpy, biopython, cython

• C, C++ compilers (Linux should be good, Mac OSX needs Xcode and the Command Line Tools)

• zlib (needed to compile Sickle; may already be present)

• PURC (available on Bitbucket)

Note: We have tested our scripts on Python 2.7, 3.5, and 3.6. However, PURC has only been tested with Python
2.7. We have also worked with others researchers who had trouble getting things run with Python 3. Therefore, we
recommend using Python 2.7.

1.1.1 1. Downloading and Installation

Python

The code below will walk you through downloading and installing a Python distribution using Miniconda, as well as
all of the Python packages that needed to use Fluidigm2PURC.

Get Miniconda for your operating system (Mac or Linux)
Answer yes to the questions the Installer asks
These commands will download Python 2.7 for Mac OSX

(continues on next page)

3

https://conda.io/miniconda.html
https://bitbucket.org/crothfels/purc

Fluidigm2PURC Documentation, Release 0.1.0

(continued from previous page)

curl -O https://repo.continuum.io/miniconda/Miniconda2-latest-MacOSX-x86_64.sh
bash Miniconda2-latest-MacOSX-x86_64.sh

Install packages with conda or pip command
conda install numpy pandas biopython cython
pip install numpy pandas biopython cython

PURC

PURC is available on Bitbucket and can be cloned and installed using the code below.

git clone https://bitbucket.org/crothfels/purc.git
cd purc && ./install_dependencies.sh

while in the PURC directory, add it to your PATH
It's best to add the PATH to your .bash_profile
export PATH=$(pwd):$PATH

If you are on a Linux computer, you may have to run the install_dependencies_linux.sh script instead.
The Bitbucket repository for PURC has more details about installation as well.

We have also included a modified version of the purc_recluster.py script as part of our pipeline (purc_recluster2.py).
The only difference is that it conducts fewer iterations of the chimera detection and clustering steps. If you would like
to use it, make sure that move or copy it from the Fluidigm2PURC folder into the main PURC folder.

Note: For the PURC scripts to work, they need to be present in the main PURC folder that was cloned from Bitbucket.
The reason for this is that the scripts reference all its dependencies using file paths that are relative to the main PURC
folder. These scripts also need to be made available in your bash PATH variable (see code above).

Fluidigm2PURC

Fluidigm2PURC is available on GitHub and can be cloned and installed using the code below.

git clone https://github.com/pblischak/fluidigm2purc.git
cd fluidigm
make && sudo make install

The haplotyping script, crunch_clusters, can optionally call the programs Mafft and Phyutility. If you would like to
use these tools, make sure that you install them on them your machine and add them to your PATH.

1.1.2 2. Running fluidigm2purc

The fluidigm2purc script will process a set of paired-end FASTQ files that have been demultiplexed using the program
dbcAmplicons and will output a single FASTA file for each locus present using sequence header information in the for-
mat required by PURC. As an example, let’s say that we have our paired-end data in the files FluidigmData_R1.
fastq.gz and FluidigmData_R2.fastq.gz. To run these data through the script, all we would need to run
is:

fluidigm2purc -f FluidigmData

4 Chapter 1. Tutorials

https://bitbucket.org/crothfels/purc/src/
https://github.com/msettles/dbcAmplicons

Fluidigm2PURC Documentation, Release 0.1.0

This will filter/trim the reads using the program Sickle, merge the paired-ends (if possible) using FLASH2, and then
write everything to a FASTA file in a new directory named output-FASTA/. If we want to tweak some of the
settings for the parameters that are used to filter/merge reads, we can specify them using command line flags (type
fluidigm2purc -h to see options). In addition to the FASTA files, the fluidigm2purc script outputs two other
files: (1) a table containing all individuals where their ploidy level can be specified (output-taxon-table.txt)
and (2) a table with per locus error rates (output-locus-err.txt).

1.1.3 3. Running PURC

If we cd into the output-FASTA directory, we can run PURC using its purc_recluster.py script to do sequence
clustering and PCR chimera detection. If you want to use the purc_recluster2.py script, make sure you move or copy
it into the main PURC folder. Also, because purc_recluster2.py only does three iterations of chimera detection and
clustering, it only requires that two clustering thresholds be specified using the -c argument (rather than the usual
four).

The code below will loop through all of the FASTA files in the output-FASTA directory and will write all of the
output to a new directory named output-PURC/.

cd output-FASTA

for f in *.fasta
do

purc_recluster.py -f $f -o output-PURC \
-c 0.975 0.99 0.995 0.997 -s 2 5 --clean

done

1.1.4 4. Processing PURC clusters

The script to infer haplotypes from the clusters returned by PURC is called crunch_cluster. If you cd into the directory
where we wrote all of the PURC output, you can loop through each locus and analyze each one in turn. If you know
the ploidy levels for your organism, you can add them to the output-taxon-table.txt file.

The code below will use the locus names in the output-locus-err.txt file to loop through all of the output
files from PURC to infer haplotypes. It will also realign the sequences clustering Mafft (--realign), clean the
sequences using Phyutility (--clean 0.4), and will only return unique haplotypes for each sample.

cd output-PURC

for l in $(tail +2 ../../output-locus-err.txt | awk '{print $1}')
do

crunch_clusters -i ${l}_clustered_reconsensus.afa -s ../../output-taxon-table.txt \
-e ../../output-locus-err.txt -l $l --realign --clean 0.4 --unique_

→˓haps
done

1.1.5 5. Downstream

Once all of the loci have been haplotyped, some of them may still contain an excessive amount of gaps from being
aligned to bad clusters (or because reads never merged). We can use Phyutility to clean these up one more time.

Example:

Remove sites with more than 40% gaps
phyutility -clean 0.4 loc1_crunched_clusters.fasta

1.1. Quick Start 5

http://blackrim.org/programs/phyutility/

Fluidigm2PURC Documentation, Release 0.1.0

6 Chapter 1. Tutorials

CHAPTER 2

Main Documentation

2.1 Getting Started

2.1.1 Requirements

• Python

• Python modules:

– numpy

– pandas

– biopython

– cython

• C, C++ compilers (Mac users need Xcode Command Line Tools)

• zlib (needed for Sickle)

• PURC

2.1.2 Installation

git clone https://github.com/pblischak/fluidigm2puc.git
cd fluidigm2purc
make
sudo make install

The Makefile will clone Sickle and FLASH2 from GitHub and will compile them from source into a folder called
deps/. You’ll need to have C and C++ compilers to do this. Typing sudo make install will copy the flu-
idigm2purc scripts and all of the dependencies to /usr/local/bin so that you can run everything from anywhere
on your computer.

7

https://bitbucket.org/crothfels/purc

Fluidigm2PURC Documentation, Release 0.1.0

2.2 Running fluidigm2purc

The fluidigm2purc script combines the tasks of read filtering/trimming based on quality scores, merging filtered
paired-end reads, and conversion of the resulting output to the proper format for running through PURC. Run
fluidigm2purc -h to see options.

Steps:

1. Read trimming with Sickle

2. Paired read mergind with FLASH2

3. Conversion from FASTQ to PURC-compatible FASTA format (“PURCifying”)

Each of the steps listed above can be run individually as well. That way, if you want to rerun one of the step with
different setting, you don’t have to start from scratch. A particular step can be specified using the -p flag and the
name of the step you want to run (sickle, flash2, PURCify). By default, the script will run all three steps
(all). The only mandatory option is the prefix for the paired-end FASTQ files (e.g., ‘FluidigmData’ for the files
FluidigmData_R1.fastq.gz and FluidigmData_R2.fastq.gz), which is given using the -f flag.

By default, the script will run all three steps (i.e., --program all)
fluidigm2purc -f FluidigmData

To only run Sickle
fluidigm2purc -f FluidigmData -p sickle

To only run FLASH2
fluidigm2purc -f FluidigmData -p flash2

To only run the PURCifying step
fluidigm2purc -f FluidigmData -p PURCify

The final output is a directory named output-FASTA that has a single FASTA file for each locus that was present in
FASTQ files used as input. The output part of the directory cab be substituted with whatever is supplied by the -o
argument (default=output).

2.2.1 PURCifying

The conversion from FASTQ to FASTA is straightforward because FASTA only uses the first two lines of every four
line sequence entry in the FASTQ file. The important bit here is that we grab the relevant information from the
sequence header in the FASTQ file and print it so that it is compatible with PURC. The things that we want are the
taxon name and the locus name. These are added by dbcAmplicons when the Fluidigm data are demultiplexed. Taxon
names and locus names can’t have spaces in them. The code splits on spaces first, then on colons (“:”) so that it can
grab the taxon and locus names (this is specific to the way the Fluidigm data are processed by dbcAmplicons). Merged
reads from FLASH2 are processed first. Unmerged reads are then read in together and are artificially combined with
eight N’s in between (“NNNNNNNN”).

2.2.2 Additional outputs

output.log

The fluidigm2purc script will output a log file that lists the taxa and loci found during the processing of the FASTQ
files. It also lists the command line arguments that were used to generate the analysis.

8 Chapter 2. Main Documentation

https://github.com/najoshi/sickle
https://github.com/dstreett/FLASH2
https://github.com/msettles/dbcAmplicons

Fluidigm2PURC Documentation, Release 0.1.0

output-taxon-table.txt

A two-column table listing each taxon and its ploidy level is generated so that users can specify what the ploidy level
of the sample is when processing the clusters output by PURC (see the section on cluster crunching). By default, all
of the ploidy values are set to None.

Example:

Taxon Ploidy
taxon1 None
taxon2 None
.
.
.
taxonN None

output-locus-err.txt

fluidigm2purc will also calculate the per locus error rate using the PHRED quality scores in the FASTQ files. It does
this by calculating the average error for each read mapping to a locus, followed by the overall average across reads.
These error values are used in the cluster crunching step to determine if a cluster output by PURC is sequencing error
or not.

Example:

Locus Error
loc1 0.002341729
loc2 0.032134829
.
.
.
locN 0.000967257

2.3 Running PURC

After running the fluidigm2purc script, you will have a new directory named output-FASTA. The next in the process
is to run PURC. We will do this for each FASTA file individually using a Bash for loop. The script from PURC that
we will run is called purc_recluster.py. Make sure that it is in the main PURC folder and also that it is in your PATH.
The code below is an example of what this would look like if you are running things on a Unix-flavored computer.

cd output-FASTA/

Loop through all of the fasta files and run purc_recluster.py
for f in *.fasta
do

purc_recluster.py -f $f -o output-PURC \
-c 0.975 0.99 0.995 0.997 -s 2 5 --clean

done

We have also included a modified version of the purc_recluster.py script as part of our pipeline (purc_recluster2.py).
The only difference is that it conducts fewer iterations of the chimera detection and clustering steps. If you would like
to use it, make sure that move or copy it from the Fluidigm2PURC folder into the main PURC folder. Also, it also
only requires two clustering thresholds for the -c option.

2.3. Running PURC 9

Fluidigm2PURC Documentation, Release 0.1.0

2.4 Processing PURC Clusters

The crunch_clusters script takes the output from PURC and will determine the haplotype configurations for your
samples using the sizes of the resulting clusters. These clusters are the output from PURC. To see all of the options
for running the script, type crunch_clusters -h.

During this part of the pipeline, we use the taxon-ploidy table to determine the number of haplotypes that should be
output (e.g., a diploid should have 2, a tetraploid 4, etc.). We also use the per locus error rates table to calculate the
probability that a given cluster is a sequencing error. The Haplotyping Tutorial provides details on the mathematical
model that we use for this step.

cd output-PURC/

crunch_clusters --input_fasta loc1_clustered_reconsensus.afa \
--species_table ../../output-taxon-table.txt \
--error_rates ../../output-locus-err.txt --locus_name loc1

We can also treat the locus as haploid by specifying the --haploid flag. This can be used for chloroplast or
mitochondrial loci, as well as for nuclear loci when all we want is the primary cluster.

To go through all of the clustered loci, we can use a bash script and a for loop to analyze each locus. If the loci under
consideration are haploid, add the --haploid flag.

List all of the loci using the error rates file
for l in $(tail +2 ../../output-locus-err.txt | awk '{print $1}')
do

crunch_clusters -i ${l}_clustered_reconsensus.afa -s ../../output-taxon-table.txt \
-e ../../output-locus-err.txt -l $l

done

Some other useful options during this step include realigning the sequences using Mafft (just add --realign to your
command). We can remove gappy sites using Phyutility as well. This can be done by adding the --clean <%> flag.
Just substitute the percent of gaps allowed per site that you want to use for cleaning. We also also have an option to
only return unique haplotypes using the --unique_haps flag.

Note: We have run into some issues with species’ names when using Phyutility. First, it doesn’t like the semicolons
that PURC uses to delimit the different parts of the sequence identifier (species names, cluster #, cluster size). We use
sed to substitute underscores for the semicolons automatically. Other characters such as dashes have created issues
as well because they get automatically substituted for underscores and no longer match the original names. If you are
running into issues with not getting any output from the crunch_clusters script, make sure you check the names
of the species in all of the files it writes to make sure that things are being inadvertently changed.

10 Chapter 2. Main Documentation

CHAPTER 3

Extras

3.1 Determining Haplotypes

3.1.1 Unknown ploidy-level

Inferring haplotype configurations for individuals with unknown ploidy levels involves identifying which clusters are
likely to be “real” haplotypes, and which ones are likely to be errors. We do this by considering a set of models
that range from treating all clusters as errors, to one where all clusters are real haplotypes. The models in between
successively treat the next cluster in the ordered set as a real haplotype (sorted by size). For an individual with 𝑁
clusters, there are 𝑁 + 1 models to test. Each of these models has 𝐻 real haplotypes (0, . . . ,𝐻) and 𝑁 − 𝐻 errors
(𝐻 + 1, ..., 𝑁). The likelihood for each of these models is the sum of the clusters sizes (𝐶1, ..., 𝐶𝑁) times the log
probility that they are sequencing errors (𝜖) or not (1− 𝜖). The likelihood for a model with H real haplotypes is given
by:

ℓ𝐻 =

𝐻∑︁
𝑖=0

𝐶𝑖 × log(1− 𝜖) +

𝑁∑︁
𝑗>𝐻

𝐶𝑗 × log(𝜖).

To determine the most likely haplotype configuration, we calculate how much the likelihood increases over the pre-
vious model when another haplotype is added (the likelihood is monotonically increasing). We also normalize these
differences by the total change in likelihood from the model with 𝐻 = 0 to the model with 𝐻 = 𝑁 . If this value is
less than a given cutoff (we use a default of 0.10), the previous model is treated as the best configuration. Since the
cluster sized are ordered, the increase in the log-likelihood will always be smaller for any additional haplotypes.

3.1.2 Known ploidy-level

To infer the maximum likelihood haplotype configuration using integer partitions, we use a multinomial likelihood
that uses the size of each cluster being considered as a haplotype. For an individual with ploidy level 𝐾, we take the
first 𝐾 clusters sorted by size and calculate the likelihood for a given partition as follows: each entry in a partition,
𝑃 , contains the number of times that a particular haplotype is represented in the configuration. Given cluster sizes 𝐶1

11

Fluidigm2PURC Documentation, Release 0.1.0

through 𝐶𝐾 and a sequencing error rate of 𝜖, the log likelihood for a partition 𝑃 is:

ℓ𝑃 =

|𝑃 |∑︁
𝑖=0

𝐶𝑖 × log

(︂
𝑃 [𝑖]

𝐾

)︂
+

𝐾∑︁
𝑗>|𝑃 |

𝐶𝑗 × log(𝜖).

Here |𝑃 | represents the size of the partition.

3.2 Fluidigm2PURC on Docker

We have made the Fluidigm2PURC pipeline available as a Docker image in the hopes that it will facilitate its use
by providing all dependencies pre-installed. This also allows any researcher with the Docker software installed on
their computer to use our pipeline (e.g., Fluidigm2PURC won’t work on Windows without using Docker). Details on
Docker itself can be found on the main website: link.

To obtain the Fluidigm2PURC image, first download Docker for your computer (if you haven’t already done so).
Then, launch a terminal window and use the following commands to get the software:

docker pull pblischak/fluidigm2purc

To run an analysis with Fluidigm2PURC, launch a Docker container that is running the Fluidigm2PURC image:

docker run -it pblischak/fluidigm2purc

The above line of code will get you running inside a Docker container with everything that you need to run Flu-
idigm2PURC. However, you will also need to link your local files to the container. This can be done using the -v
option. To start, navigate to the folder with your paired-end reads (R1 and R2) that you want to analyze with Flu-
idigm2PURC. Then, use this command to link that folder to the Docker container running Fluidigm2PURC:

docker run -it -v $(pwd):/home pblischak/fluidigm2purc

If you type ls, you should see your files available for analyzing. All analyses that you run in the container will
also write those files to the directory from which you launched the container. This way, everything that you do will
automatically be available on your computer outside of Docker.

12 Chapter 3. Extras

https://www.docker.com/

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

	Tutorials
	Main Documentation
	Extras
	Indices and tables

